Welcome to another issue of KUME’s Vibrations newsletter! As you’ve come to expect, this issue is packed with information about our students, faculty, and alumni. We greatly appreciate hearing from you and letting your colleagues know how you’re doing and where you’re located these days. As you can see from examples in this issue, each of you has a unique, interesting story to tell; and we trust that KU gave you a good basis for starting on your career journey.

We’re always pleased to see you at any opportunity. So, if you’re close by, stop and talk/tour with us. In addition, the Engineering Alumni Receptions will “start up” again this fall, and I hope to see you as your schedules permit. We’ll be in Los Angeles, San Francisco, Wichita, and Kansas City, Kansas, with plans for Dallas, Houston, and Denver later in the academic year. Keep “on the lookout” for notices of those events.

I want to take this opportunity to express a special thanks to three people who have made this newsletter possible. LaRoux Gillespie, ME Advisory Board member is always tireless in his promoting, writing, and receiving materials for the newsletter. Dr. Charles Reese, KUME professor Emeritus, helped with the editing; and Megan Ochanpaugh, KU student and member of the KUME office staff, formatted and edited the newsletter. They’ve done a great job!

Please send us any comments, news items or input. We will look forward to hearing from you. Enjoy the newsletter!

Help us Help the ME Department at KU
Each year the ME department has many opportunities for you to help. Below is a list of some opportunities that are appropriate today. Join us and meet the young people who will become tomorrow’s leaders:

- Plan tours of your facilities
- On-campus technical presentations for ASME, SAE, and BMES
- Sponsoring real-life senior design project problems/challenges
- Providing Scholarships/Fellowships for deserving students
- Hardware, software, funding, or technical expertise for student projects
- Suggestions for other information needed on the ME website (www.engr.ku.edu/me/)
- Encouraging your children, grandchildren and neighbor children to become MEs at KU, and taking them to visit KU
- Providing your memories to the newsletter and/or providing details of your career
- Submitting old photos of the ME department or of former students
- Helping and encouraging ME students to become a summer interns
At the Spring 2004 Banquet, the ME department recognized L. Joseph Bauman, President and CEO of Cardinal Brands, Inc., for his career which included a major role in developing the IBM PC. He graduated with a BSME degree in 1961.

Joe began at Kansas City’s Bendix Corporation plant working as a process engineer on non-nuclear components for nuclear weapons. He worked there four years as a manufacturing engineer before moving to IBM.

From 1968-1969 he worked in an IBM manufacturing plant just north of Milan (Vinercate) as a manufacturing process engineer to develop manufacturing processes that were used in both Italy and the U.S.

Paul Allan’s e-book, A History of the Personal Computer: the People and the Technology (Chapter 9), provides a great look back to days of the introduction of the PC. He notes, “In 1980 … Funding was granted for 12 engineers to develop the prototype and detailed commercial proposals…. The group would produce a prototype in 30 days…. Joe Bauman was selected to develop the business and manufacturing plans… The project was given the code name “Chess” and the PC was given the code name “Acorn.” The estimated market for the IBM PC was 250,000 units over a five-year period…. IBM had orders for 30,000 systems from its own US employees on announcement day. A group of 12 people in 1980 grew to 9500 by 1984… by the end of 1983 IBM had sold 750,000 PCs.”

The impact that the IBM task force had on each of our lives today is unimaginable to those who were born after the PC became a common household and office item. Joe Bauman’s involvement as a member of that team clearly puts him among the most notable of our graduates for the impact made on literally hundreds of millions of people throughout the world. It was a business decision that re-thrust IBM into the mainstream of technology and computing. It was a business decision that made fortunes for IBM and hundreds of others who took advantage of the openess of the design. It was a technology leap. A personal leap for each person who chose to say, “Yes, we need to move away from our traditions and make a new beginning.”

From that point, Joe rose through the executive ranks of IBM in a variety of jobs including the quality leader, a position now revered for its supreme excellence.

Joe was named Dean of the KU Business School in July of 1990 and remained there until December of 1997. Today Joe is Chairman of the Board, President and CEO of Cardinal Brands, Inc. This Lawrence based manufacturer of office supplies has five manufacturing plants and 2000 employees. In addition he is or has been a director of six companies or banks, and has been a member of the American Management Association’s Manufacturing Council.

For all his accomplishments, Joe Bauman clearly is a Mechanical Engineer who has brought great distinction to himself and the organizations he has led because of his technical abilities as well as his business acumen.

In addition to being part of the Task Force which started the IBM P.C., Joe was Plant Manager–IBM, Rochester, Minnesota, Vice President of Manufacturing for the Personal Computer Division, IBM Director of Materials, and IBM Director of Quality for Product Development and Manufacturing. His management and engineering positions at IBM encompassed manufacturing plants in Rochester, Minnesota; Boca Raton, Florida; and Vinercate, Italy.

He has been or is currently a director for several businesses, including Cardinal Brands, Adams Business Forms, Cydex, Commerce Bank of Lawrence, Kansas, Norwest Bank of Rochester, Minnesota, the Society of Manufacturing Engineers (SME) Foundation, and the American Management Association–Manufacturing Council.

In presenting the Distinguished Alumni Award, LaRoux Gillespie, noted that in 1980 Joe and his fellow teammates at IBM transformed the lives of over a billion people, with billions more yet to come. That project changed the way computers were made and the way we do business today. Today we find some of the results of those effects in our cars, TV’s PDAs, cell phones, and appliances.
Joe had a number of insightful words for the audience, but he began by restating the Dean of Engineering McKnown comment to Joe’s class in the 1960s. Dean McKnown said that 40% of the CEOs of major corporations were engineers. That meant that there was still plenty of room for more engineers to take over CEO positions. That was a lifelong dream of his and he has repeatedly seen that dream through to reality.

Video Teleconferencing Capability

Need to communicate with several faculty members at one time? KU has video-teleconferencing capabilities that were used in the April Advisory Board meeting. Kerry Graunke of Intel in California and Dave Rank of Harley Davidson in Milwaukee joined the on-site board members for the spring meeting.

Engineering School Enlarged as Result of ME Alum

Bob Eaton, BSME 1963, was the honored guest at the dedication of the School of Engineering’s new Eaton Hall in October of 2003. Mr. Eaton, an Arkansas City, Kansas native, rose through the ranks of Chrysler to become Chairman and later Chairman of DaimlerChrysler. He has received both the School of Engineering’s Distinguished Engineering Service Award and Mechanical Engineering’s Distinguished Alumni Award (2002).

Summer Internships

You can help many of our future graduates by encouraging them to seek summer engineering internships.

In the “old days,” some ME’s were able to find summer jobs and were known as “summer hires” by their companies. Today we call them “interns” or “summer interns”. There are more students looking for these positions than opportunities available for them. That lack of opportunity makes a difference in getting job offers. Graduating seniors who apply for jobs find that they do not understand the questions or know how to answer the interviewer’s questions unless they have worked as a summer intern. Resumes that show intern experience quickly capture the attention of companies and can make a big difference when it comes to hiring. Encourage students you know to take advantage of these opportunities and to search for internships starting early in September. As an employer, if you have internship positions available, it can offer you a chance to “test before you buy.” This will help you learn the quality and ability of the students before you make long term commitments. It is a win-win situation.

Does it really make a difference? Certainly. We would like to have some of our graduates drop us a note with their comments about summer intern impact. We want our students, early in their course of study, to appreciate the value of internships. Send us your comments. Address them to Carol Gonce in the ME office (cgonce@ku.edu, 1530 W. 15th St, 3138 Learned Hall, Lawrence, KS 66045, (785) 864-3181, or fax (785) 864-5254). For help with professional placement, contact Cathy Schwabauer at (785) 864-2926 or Misty Grosko at (785) 864-4206.

Grades in ME

Some universities have noted a consistent rise over the years in grades given to students. The staff looked at the past five years and there is no evidence that grade inflation has occurred in the ME Department. The Department seems to be as rigorous on grades as in the “old days”.

ME’s New Rapid Prototyping Machine

In 2003 the School of Engineering acquired a Fadal 5-axis CNC Machining Center for intricate part machining. They also added a Stratasys Prodigy Plus Rapid Prototyping machine that lays down layer after layer of ABS plastic in a thin, finely controlled bead. Both of these machines add new capabilities to student and faculty projects and both add modern technology consistent with industry equipment.
KU Biomedical Engineering Program Is Growing

In addition to our traditional offerings, major growth is continuing in the graduate Biomechanics program. Several factors in the past year have provided great acceleration for the biomedical engineering work at KU. The state of Kansas has completed plans to fund $500 million of bio-related research and technology transfer in the next decade. KU will be a significant part of the work, which will involve the medical school, pharmacy, biology and chemistry faculty as well as engineering faculty. In addition, the Stowers Institute in Kansas City is a major collaborative source for related work; and all of this will focus more National Science Foundation attention on KU. As a result of these efforts Mechanical Engineering will enlarge its faculty by at least two positions to accommodate this additional Biomechanics related effort. In addition to our Undergraduate Biomechanics Emphasis, these growth positions will also support the graduate program, particularly at the PhD level. Traditional areas of course work and research will benefit from Biomechanics faculty teaching and working in fundamental areas of ME and from another one or two faculty as a result of building the Transportation Institute, and further funding from tuition enhancement.

Winners of Logo Competition

First Place (Formal Design)
Marcus Flores

Second Place (Formal Design)
Jamie Fransen

Informal Design
Leighton LaPierre and Travis Scott

FSAE Results

The KU Formula Car Team placed 35th out of 134 participants in the 2004 Pontiac, MI competition. Congratulations to all of the 2004 team members! For detailed results, go to www.fsae.com/results.shtml.

The entries are in and awards have been made for the ME Logo Competition. Thanks to all who submitted designs. Excellent designs made for some tough Logo Committee decisions. A special thanks goes to the Logo Committee, chaired by Ron Schorr and with members Joe Takacs, Lisa Friis, Jill Hummels, and Scott Chapman, who did a fine job of making selections. There were two categories, formal and informal, with two places in the formal category and one informal place. The winners and their designs are shown below.
Does KU still teach the basics of Mechanical Engineering?

The answer is yes! A few alumni who have seen the news about bioengineering posed this question. These alumni were pleased with the biomechanics emphasis, but were concerned that what they learned when they attended KUME might have been dropped along the way. Never fear the basics are still there. While there are plans for more faculty to perform more research, with the exception of a couple of classes per year, faculty have taught every one of the courses for years. Experienced faculty do the teaching just as they did in the past.

ME Senior Design Projects in Review—Past Years

Each year, 25-30 of mostly senior students design a Formula SAE car from scratch. Then, they learn about machine, form, lay-up, polish, paint, repair, redesign, rebuild, test, and compete in a weeklong nationwide competition in Detroit every May. Two years ago, they had to reduce the weight of that year’s car to 475 pounds from the maximum desired limit of 500 pounds, reduce the car’s handling stiffness from the previous year (meaning a different suspension), and resolve a host of difficult failure and performance problems. They moved to hydraulic shifting with a push button on the steering wheel.

They began with an SAE sanctioned motorcycle engine, which they fine tuned dynamically using computer tools. They modeled the suspension with Adams software. They were competing for their ninth year and placing for the third year in the top 25. Only one other university has attained that level of consistent competitiveness. Each year they’ve gotten better, learned the unofficial scoring desires, and learned that the report describing their work counted nearly as much as some of the performance (the paperwork is as important as the product). They also learned that you have to sell the concept and design with an effective, knowledgeable presentation and answer many unexpected questions about why you chose a particular approach, e.g., why a certain dimension was chosen. In short they learned that, to be successful, you must have a team in which every person understands his/her part of the design and fabrication in great detail.

The 2003 team who competed in May 2003 finished all the events of the competition. That may not sound like a great accomplishment to those of us from afar, but KU has been one of only two teams to do so for 4 consecutive years. That is 2 out of 120-140 teams. The events include skid pad, braking, acceleration, cost, design, time trials, endurance (many cars never make it through the endurance portion). Safety and fuel economy are important parts of design and construction. Their car accelerated from 0-90 mph in only 6 seconds. The carbon fiber chassis weighed only 40 pounds. Overall, they...
In a previous year, one team designed a “Field Chair” for the Topeka based Capper Foundation that would allow wheelchair-bound sports contestants to throw javelins, shot put, etc. from a chair. That obviously requires a chair with stability and something to counterbalance the rotary throwing moment. Another team designed and built a plastic pallet strength tester for Rehrig Pacific in DeSoto, KS. Another team designed and built tooling for a Hallmark Cards’ Hot Die Stamping Press. This group had to understand the automation and production requirements that existed as well as actually providing special dies to do flexible low volume runs. They learned that the flatness of the dies was not as flat as was required for precision die work and some dies, which could be made flatter, only last for about 50,000 impressions. The Hallmark Ribbon Quench Team redesigned a water quench system that cools plastic ribbon as it leaves the rollers in fabrication. Water temperature is critical, and the team solution was designed to eliminate a million gallons of water use as well as energy costs.

The M-Pact (Eudora, Kansas) Senior design Team designed a plaster of paris quick set splint/cast that was lightweight, inexpensive and safe to use.

For the spring 2004 seniors, the projects once again included the SAE Formula 1 Car. In addition, one team designed and constructed a model aerial refueling boom system for Boeing of Wichita that provided more automatic control of boom location during flight using strain gages and simple feedback loops. This was an impressive project with a wood/metal prototype to show how it would work.

Another project for Grundfoss in Olathe, KS, included a liquid pump system comparison. Then there was a team exploring how sturdy aircraft sound deadening panels were to resist damage from high pressure hydraulic leaks (i.e., would the fine hydraulic jet leaks cut through the deadening material? They did not). Another team was upgrading a furnace for melting materials on greeting cards for Hallmark of Lawrence, KS. The “smart” golf ball team (Fore Entertainment of California) had to segregate conventional golf balls from look-alike balls that had RF transmitters in them so that while standing at a tee, the golfer could determine how far the ball went. The ball either talks to you, or the screen in front of you shows the distance. Since regular driving golf balls looked just like the smart balls when mixed together, someone physically had to sort them. The KUME team had a simple system to do 10,000 golf balls at a time.

The final team this year designed and built a stroke victim arm exerciser to help victims in their daily rehabilitation (Center on Aging, KU Medical Center). The system uses a computer mouse with preprogrammed positions and varying levels of difficulty to challenge those needing help to move their arms to specific spots. Each of these teams has members with varying degrees of organizational skills, different levels of commitment to the project, different approaches, and certainly different team dynamics. Much like what they’ll find in the real world.

But all of these projects present real design needs and demonstrate once again, KUME’s can and do apply their engineering skills. They are still the practical men and women that we knew decades ago.

Department of Mechanical Engineering’s Mission

The three-fold mission of the Department of Mechanical Engineering is to provide its students with an education of high quality, generate and apply knowledge, and serve both society and the engineering profession. In support of this mission, there are one primary and two secondary objectives.

- **Primary Objective**- to produce technical competence in the contemporary theory, principles, and practices of mechanical engineering. It is expected that graduates can (a) apply knowledge of mathematics, science, and engineering; (b) use the techniques, skills, and tools of modern mechanical engineering practice; (c) design a system, components, or process to meet a specified need; (d) identify, formulate, and solve mechanical engineering problems; and (e) design and conduct experiments and analyze and interpret data obtained there from.

- **Secondary Objective**- to produce broad understanding in the humanities and in social science areas. It is expected that graduate can (a) function as responsible members of society and as members of teams; (b) uphold professional and ethical standards; (c) communicate effectively; (d) understand the impact of engineering solutions in both global and societal contexts; and (e) have knowledge of contemporary issues.

- **Secondary Objective**- to produce recognition of the need for and an ability to engage in life-long learning.
Inside the Formula SAE Experience
By: Scott Chapman – Captain of the 2003 FSAE Team

A few months ago, I was meeting to check up on a few friends whom I had not heard from in a while, as major events in life, such as graduating from college, tend to make you do. Inevitably, the part of the answer to the question, “What have you been up to this past year?” is Formula SAE. I begin to tell them about the long hours, sleepless nights and barely having enough time to eat some weeks. “Why?” is almost always their response, coupled with a look, both disbelieving and questioning my sanity, not that different than the response I’d have given if I had just told them that I sold all of my possessions and was hitchhiking to the moon. I’d be lying if I said that at some point last year, most of the team did not wonder that same question about themselves. The Formula Team consists of a mixture of about two dozen seniors and underclassmen volunteers putting together several hundred parts, with about half of those being built and/or designed by students, that requires $40,000 raised by students from donations and a little more than seven months to have a car ready to race against 140 other teams trying to reach the same goal. The University of Kansas is one of the few teams that does this while not building a carbon copy car of previous years’ or other teams’ cars; a fact of which all involved are proud, but a fact that requires an incredible time commitment.

There are many stories as to the dedication of team members. Stories of team members who commute from Kansas City moving to a 48-hour day, working for forty and sleeping for eight, so they don’t have to drive as much. Another team member whose wife would come pick him up each morning because he was too exhausted to drive home. Two all-nighters a week are not uncommon, as are several days without sleep. From day one, team members yield every Tuesday evening and Saturday, and eventually every day, to the car. Students do all of this while keeping up a full schedule of senior level engineering classes, trying to graduate and securing a job. It is no wonder that, several years ago, the FSAE competition motto was, “Formula SAE: What a way to wreck a relationship!” “Why?” is a very good question.

If any car enthusiasts are asked this question, the obvious answer is “You’re building a racecar; what’s cooler than that?” How many people can say they have built a racecar? This is a unique experience that few people get to fully appreciate. The feeling of being strapped into a car that you just spent countless hours designing and constructing, before firing it up, hammering the gas and feeling all of the blood in your body run backwards cannot be given justice on this page. This is something that should really be on one of those annoyingly addictive ‘101 Things to Do Before You Die’ lists that keep popping up on TV and in magazines.

It might be career related. No other class I have taken fuses together theoretical coursework and hands-on experience like this project. Not only that, but skills in communication, business, management, manufacturing and design are all necessary for a successful team. This is the most complete engineering experience I could imagine. It is no wonder that the Big Three automotive companies routinely cull their new hires from this event. However, for all that is gained, this is still a ‘practice game.’ This is a chance to take risks and overreach before entering the high stakes business world, where mistakes could follow you around for the rest of your career. These are all good reasons, but the real reason hit me one morning earlier this year.

As captain of the 2003 team, and a graduate student this year, I have been in the unique position of being able view this year’s team with the eye of an outsider who has been there before. Earlier this year, I dropped by the Formula lab to check on the progress of the team, and I was greeted by an empty room and a partially assembled car, trademarks of a team that is exhausted from being almost finished. After glancing over the car and the progress, a sheet of paper hanging up on the wall caught my eye. It was a sheet of ridiculous quotes made by members of the team. Included on this sheet were two quotes, “The Tom Petty School of driving,” and “That sounded like a dead cat.” I didn’t get it. I didn’t have to. I burst out in laughter as I was instantly taken back to last year, joking around late at night with some of my best friends and several others with whom I had become friends while we were working together, and it occurred to me why students put themselves through this every year. This team has taken a lot from their experience. They were the first KU team to make it to the design semi-finals, and KU is still tied with Cornell for the longest active streak of finishing every event (four years). They will take what they’ve learned out into the real world, but sometime in the future, they will hear something about Tom Petty or dead cats, and remember what made the long hours worth it: the friendships.
The View from the 2004 Spring Banquet

The 2004 Spring Banquet in April was a huge success. The fall newsletter will have all of the details, such as the awards given out and the names of the seniors working on design projects. If you missed the banquet this year, here are some pictures:

LaRoux Gillespie and Joe Bauman shake hands after Joe is presented with his plaque for the Distinguished Alumni Award.

Sara Wilson hands Terry Faddis his award for being voted “Most Outstanding Faculty Member.”

Jim Straight, Terry Faddis, Ron Dougherty, and Sara Wilson pose for a picture during the 2004 Spring Banquet.
In Passing

Carl W. Koch, BSME 1936, residing in Odessa, Texas died July 11, 2003. He was born Jan. 24, 1912.

Walter P. Glancy of Dallas, Texas died May 4, 2003. He earned his BSME in 1940 and his MSME in 1941. He was born Dec. 11, 1915.

Lester E. Hey, BSME 1940, residing in Baldwin City, Kansas died March 27, 2003. He was born May 8, 1915.

Daniel A. Hirschler, BSME 1940, residing in Manitou Springs, Colorado, died Nov. 4, 2002. He was born June 12, 1917.

Dorman S. O’Leary, a 1940 BS Mining Engr. (a part of ME) graduate residing in Wickenburg, Arizona died May 23, 2003. He was born April 18, 1924.

Eldon W. Sams, BSME 1943, residing in Cleveland, Ohio, died March 2002.

M.J. Melvin Huxtable, Jr., BSME 1948, residing in Lawrence, Kansas died July 23, 2002. He was born March 23, 1924.

Albert G. Kistner, BSME 1948, residing in Marysville, Kansas died Nov. 30, 2002. He was born Aug. 7, 1921.

Vernon A. Sanders, BSME 1949, residing in San Antonio, Texas has died.

Frank J. Haas, BSME 1949, residing in Sun City West, Arizona, died Dec. 1, 2002. He was born May 21, 1921.

Robert M. Shearer, BSME 1950, residing in Vero Beach, Florida died Aug. 29, 2002. He was born March 2, 1926.

Donald W. Martin, BSME 1951, residing in Stover, Missouri died Jan. 18, 2003. He was born March 25, 1923.

Milton D. Sills, BSME 1955, residing in Wichita, Kansas died March 27, 2003 at age 69.

Burson D. Carpenter, BSME 1959, residing in Chadds Ford, Pennsylvania died Sept. 12, 2002. He was born July 8, 1922.

Alumni Responses

After the “WWII Jayhawk Bomber” article, George Copper (glcooper20@earthlink.net) heard from Erwin Gerharter who was in his ME classes. Erwin was in the same 345th Bomber Group as George, but came after George had rotated back to the states. That meant that Erwin also saw the Jayhawk on the nose of the bomber in New Guinea.

Some time ago Donald E. Bayne, BSME 1951, noted that he was retired from the US government service (1984). His son Kirk is an EE and uses the Internet for his digital TV discussion group.

The following were first published in the Oread Engineer.

- Kenneth W. Miller, BSME 1957, is Chairman of Air Liquide America and resides in Houston, Texas.
- Jerry Cadwell, BSME 1960, resides in Oviedo, Florida.
- Donald Swenson, BSME 1963, MSCE 65, PhD, CE 1967, was elected Life Fellow by the American Society of Mechanical Engineers, and elected Full Emeritus member of the Sigma Xi Scientific Research Society. He is retired and now resides with his wife, Harriet (BS Educ. 1963) in Overland Park, Kansas.
- Stephen S. Carter, BSME 1979 and MBA 1980, is vice president of consumer marketing for Sprint’s local Division. He lives in Overland Park, Kansas with his wife, Martha, and their daughters Lee, 11 and Matie 6.
- Chad M. Hinrichs, BSME 1991, joined the Intellectual Property Group of Doerner, Saunders Daniel & Anderson LLP with legal experience from private practice and his tenure at Koch Industries and Fluor Daniel, as well as engineering experience in manufacturing and oil and gas. Hinrichs is a licensed patent attorney and is also licensed to practice in Oklahoma.
- James VanSickle, BSME 1944, is president of Vanguard Products Corp in Topeka. He and his wife, Mary Gordy, reside in Topeka. Vanguard now has two plants in Topeka with 60 employees producing manholes, reinforced concrete pipe, box culverts, curb inlets, junction boxes and custom designed products.
- Norman Sisson, BSME 1949, is retired as the general counsel of the Louisiana Department of Transportation and Development. Sisson who earned a Juris Doctorate from Louisiana State University resides in Baton Rouge, Louisiana.
- William Munson, BSME 1950, retired from the New York Power Authority, where he was resident manager. He now resides in Kingston, Tennessee with his wife Patricia.
- Omer Lamborn, BSME 1952, is retired as president of Sheet Metal Engineers. He resides in Canoga Park, California.
- Donald Coffman, BSME 1961, is retired from his position as maintenance manager for Phillips Petroleum Co. He reports that he and his wife, Jane, are enjoying life in sunny Phoenix, Arizona.
- T. Michael Garrison, BSME 1961, is director of business development for George Butler Associates. He and his wife, Roberta, reside in Leawood, Kansas. He reports they have a new granddaughter in the family, Isabel Lucille Garrison. Mike is a member of the ME Advisory Board.
- Carlos Martinez, BSME 1979, is utility plant supervisor at Disney World. He and his wife, Teresa, reside in Clermont, Florida.
- Jared Klein, BSME 1994 and MSME 2002, is mechanical design engineer for Garmin International. He and his wife Kristi, had a son, Scott Alexander in November 2001. They report he is already a huge KU fan. The family resides in Olathe, Kansas.
- Chris Dundon, BSME 2001, is chassis design engineer for Honda R&D Americas Inc. In June 2002, he married Stacie Gattis, a 2002 art education graduate. The couple lives in Marysville, Ohio.
Alumni Update

In order for us to know what you are doing and inform others in future newsletters, please drop us a note or fill in this form and return it to: ME Vibrations newsletter, University of Kansas, Mechanical Engineering Department, 1530 W. 15th, 3138 Learned Hall, Lawrence, KS 66045. Send email to kume@ku.edu or visit our website at http://www.engr.ku.edu/me/.

Name__
Class__
Address__
Company_________________________ Title___________________________
News about yourself, your family, and/or your job:__________________________
__
__
__
__
__
__

Name__
Class__
Address__
Company_________________________ Title___________________________
News about yourself, your family, and/or your job:__________________________
__
__
__
__
__
__

Name__
Class__
Address__
Company_________________________ Title___________________________
News about yourself, your family, and/or your job:__________________________
__
__
__
__
__
__

Name__
Class__
Address__
Company_________________________ Title___________________________
News about yourself, your family, and/or your job:__________________________
__
__
__
__
__
__

Name__
Class__
Address__
Company_________________________ Title___________________________
News about yourself, your family, and/or your job:__________________________
__
__
__
__
__
__