This issue of ME Vibrations highlights just a few of the outstanding accomplishments of our alumni, faculty and staff. As you read through the newsletter, you’ll see articles on faculty who have been recognized for their excellence in teaching and research, as well as recognition of our staff - who underpin the success of our students and faculty. In addition, you’ll read simply exciting news regarding our students’ national achievements. You’ll see (and probably already know) that they continue to set the bar higher for succeeding generations - at KU and across the nation! Finally, this issue gives you some unique perspectives on our KU Alumni - both through Distinguished Engineering careers as well as those in areas where you might not expect to see MEs. They are everywhere, demonstrating just how valuable an ME degree is (especially one from KU). As always, we value your comments, input, and certainly your visits. Just as in the past years, we invite you to the April 28, 2006 KUME Spring Banquet.

As the holiday season rapidly approaches, we hope that you are able to enjoy the festivities with a most pleasant end of the year, while preparing for a great start to the New Year. Warmest wishes to all of you!

TenPas Wins Prestigious Sharp Teaching Professorship

By: Amanda Johnson & Shelby Stice

Dr. Peter TenPas has been awarded a three-year Sharp Teaching Professorship from the KU School of Engineering, which includes a significant monetary award. Only three of these Professorships are available in the School, and are designed to recognize the very best in the School for excellence in teaching and leadership. In this vein, Dr. TenPas is well known for his efforts to innovate in the classroom, including developing web-based resources for Thermodynamics (ThermoWorkbench) and introducing finite element modeling into the undergraduate numerical methods course. He has worked hard to incorporate writing, design, and computational elements into existing courses and to promote teamwork skills among the students. These activities are directed toward deeply involving students in the learning process and in reaching as many students as possible with a large variety of teaching techniques.

In addition to the Sharp, Dr. TenPas is the past recipient of KUME’s annual Cramer Outstanding Mechanical Engineering Faculty Member Award and the Mechanical Engineering Remarkable Professor Award. He is also maintaining currency in his area of expertise through research funded by the Department of Defense (collaboratively with Dr. Surana) to develop cutting edge computational finite element methods.
Most M.E. graduates spend their life's work in some phase of mechanical engineering. But there are some exceptions, and we found a few of our KU graduates who took different paths. At least two KUME's went on to become professional pilots for major airlines. We found a dentist, a medical doctor, several lawyers, a patent attorney, many owners of their own businesses, realtors, college teachers, those with military careers, brokers, a radiation oncologist, ministry leaders, and a veterinarian. (Detailed backgrounds of two such alumni appear on the following page.)

Charles A. Askew '63 Professor @ Evangel College
Harold Baggerly '62 Professor @ Longview Community College
Bill Barr '61 Professor @ KU
Robert Y. Bodine *58 Professor @ Milwaukee School of Engineering
Broc R. Bradley '84 Pilot, Delta Airlines
John A. Burnett '79 Radiation Oncologist
Jerry J. Cadwell '60 Lawyer/Engineer
Rob N.S. Chian *60 Professor @ Virginia Tech
John D. Deakins *66 Fellowship of Companies for Christ
Merle L. Engle '62 The Family Ministry
Robert L. Farris '61 Lawyer
Evan H. Ice '86 Attorney
Peter E. Jenkins '65 Dean of Eng. @ Univ. of Colorado at Denver
Roy M. Knapp '63 Professor @ University of Oklahoma
Tom J. Love '57 Professor @ University of Oklahoma
Alfonso A. Mages '65 Professor @ Fort Lewis College
Myron B. Margolis '59 Captain, Continental Airlines
Eugene C. McCall '74 Attorney
Donald R. McQueen '62 Captain, United Airlines
Larry G. Meeker '68 Econ. / Chief Banking Studies Fed. Reserve
Jeffrey C. Miller '74 Pilot, Northwest Airlines
Ron Nugent '85 Orthodontist
Larry Oline '61 Professor @ University of South Florida
Phillip C. Peterson '52 Attorney
M. Rapagnani '67 Assistant Provost @ Notre Dame
Phillip A. Rein '57 Patent & Trademark Attorney
Norman L. Sisson '49 General Counsel Baton Rouge
John S. Smith '72 Veterinarian
Warren E. Snyder Professor @ Milwaukee School of Engineering
Robert Sorem ^91 Associate Dean @ KU School Of Engineering
R. Stan Stockton '47 Professor @ Indiana University
Robert C. Umholtz '56 Professor @ KU
Thomas VanHoozer '75 Attorney
Mohammed Zikry '80 Professor @ North Carolina State University
Magd E.D. Zohdi *66 Professor @ Louisiana State University

If you have an unusual occupation for an ME graduate, please drop a line to the ME office and tell us about it. We would truly love to hear how your ME background helped in your current occupation and the reasons you first chose ME and then another career. If we missed anyone who should be included in this list, please advise us.

* = MS ^ = Ph.D. ' = BS
Ron Nugent, BSME ‘85, has moved from engineering to exploring small cavities. He is an orthodontist today in Wichita with two particularly unique aspects to his life. Straightening teeth is simply a matter of applying Statics to the human mouth - forces on teeth. It is simply force vectors applied to teeth. “I use my engineering all the time,” he notes. “Engineering is a great background for many careers, whatever you want to do.” It teaches you a variety of educational aspects, analysis, and problem solving skills.

Ron intended to enter medical school after he finished his bachelor’s program and eventually become a pediatrician. He liked science and math and wanted a job to fall back on in case medical school didn’t work out as he had planned. Engineering provided all of that. He enrolled at Southern Methodist University, and began his freshman year with the intent to become a chemical engineer; but when he got there, he found they did not have a chemical engineering program. He was an excellent swimmer so he swam at SMU his freshman year and decided that he was going to stay out of school the next year and concentrate on becoming one of our Olympic swimmers. He returned to Wichita to concentrate on swimming, and in 1980 he became part of the US Olympic swimming team. His specialty was the 1500 freestyle. He won the 1500 event in the World Games in Mexico City prior to the Olympics. But in 1985, the Soviet Union had invaded Afghanistan, a country near important world oil supplies, and the US protested the action by not attending the Olympics. President Jimmy Carter was urging the US Olympic Team not to participate.

While staying out of school that one year, Ron found that being a pediatrician would not be the career that he wanted, but orthodontics would be. His high school swimming coach had moved on to KU, so he just followed him and decided to be an ME. So the KU ME department has an Olympian as well as an orthodontist.

Troy Augustine, BSME ‘92, is another example of an ME graduate working outside the normal mechanical engineering envelope. He invests in companies. As Stoddard Hill Capital’s founder and managing director, he and his company acquire and operate small to middle market companies. They focus on established and profitable firms with up to $50 million in revenue, operating in manufacturing, distribution, and business services.

He went to GM after graduation and arrived just as the air bag industry came into existence. When he began his career working as a product engineer on passenger side air bags, he was one of 30 people working with this technology. When he left, there were 10,000 people in that business. He moved quickly from engineering to technical sales, marketing, and business development. It was a fast growing industry and he moved as fast as the industry (maybe faster). He notes his job was much like drinking from a fire hose because of the pace of the business.

Troy Augustine’s career began at Delphi Automotive Systems. Over a 7-year span, he gained experience in product development, manufacturing, engineering, supply chain, sales, marketing and business development. In 1996, he was awarded the prestigious General Motors Fellowship. He holds an MBA and a master’s degree in Manufacturing Systems from Stanford University. He has a 14-year track record of excellence in manufacturing and service companies. Prior to founding Stoddard Hill, Troy was a vice president at Tradec, an enterprise software company, funded by top-tier venture firms Kleiner Perkins and Norwest Venture Partners. At Tradec, Augustine helped leading companies such as IBM, Dell, Sanmina-SCI and Juniper Networks improve their procurement and supply chain practices. Agile Software acquired Tradec in 2003.

What does he do? He and a strong team of investors and advisors complete acquisitions and build successful companies. They buy and grow companies and provide divestiture opportunities for divisions of companies that no longer reflect the corporate parent’s strategic direction. At a recent KUME Advisory Board meeting he noted that engineering provided a great starting point for his work. He learned problem solving. His work is highly analytical – financial statements, cash flow, financial sensitivity, and other quantitative data provide his daily challenge. His company is one of about 15 in the same business arena. So, in 13 years, his job is to run companies, not one, but several – an entrepreneur to be watched as a model of doing it right.
I've been asked to tell you a little about my career and what I think was helpful. In that regard, the first thing that I want to tell you is that you are not done learning. Studies have shown that 80-90% of what you need to know to do your job is learned through on-the-job training. Your college education provides a foundation so you can continue to learn throughout your career. Be assured, the foundation that you've received here at KU is solid.

My on-the-job training at the Navy Research and Development laboratory started immediately and rapidly accelerated after one month on the job. That is when I got a call from the secretary for the Technical Director of the lab, Dr. Bill McLean saying that he wanted to meet with me. Now realize that the Technical Director was my supervisor’s supervisor, supervisor’s, supervisor’s, supervisor’s supervisor. Dr. McLean was a nationally recognized scientist, best known for the invention of the Sidewinder missile. As I walked into his office two day’s later, if I wasn’t intimidated enough already, there was a picture of him receiving a Presidential Award from President Kennedy. Dr. McLean proceeded to tell me that the lab had just been awarded a program to develop new concepts for submarines to carry and launch more weapons and he wanted me to be the project manager! I knew little about airplanes but had never even been close to a submarine. In fact, I told him that I grew up in Kansas and the closest that I had ever been to waves was the “amber waves of grain”. He explained that the submarine design community was one of the most rigid and if he let one of them manage the project, he already knew what the answer would be. He wanted new ideas. I was to report directly to him. It was a 3-year program for $1 million per year. Remember, this was 1971. A million dollars was a lot of money. Needless to say, my on-the-job training kicked into high gear. I took my first submarine ride a few weeks’ later and learned definitions for terms like reserve buoyancy, metacentric height, implodable volume, sound velocity profile, convergence zones, and sound pressure level. I also become more familiar with Bournoulli; more so than I had ever been in my fluid mechanics classes. I’m happy to report that some technology from that program was incorporated in new submarine designs that are still in service today.

About the time that program was finishing, the Office of Naval Research named me the “strategist” for the Navy’s Undersea Warfare Weaponry technology program. There, I was able to assemble a team from laboratories and universities throughout the U.S. to assess the overall undersea weapons technology area. Once again, on-the-job training was required. So, the first point that I’ve tried to make is that you aren’t done learning. I’ve continued to learn throughout my career. Lately, a lot of the things that I’ve learned have been from new hires like yourselves and from your new ideas.

Another point that I’d like to make is that sometimes you learn more when things don’t work exactly as planned. Notice that I delicately avoided the use of the word “mistakes”, but in my case, that’s probably a better description. If things are always working exactly the way they were planned, you probably aren’t pushing the edge of the technology envelope. In baseball, there’s a saying “no hits, no runs, no errors.” That may be true if you’re the pitcher but if you’re the batter, you’ve got to swing the bat if you ever want to get a hit. At an R&D lab, one of the worst things that can happen to you is to be described as no hits, no runs, and no errors. Edison is recognized as a great inventor but his batting average wasn’t very good if you count all of the attempts that didn’t work. However, because of his determination, he hit some colossal grand slams that still benefit us today.

I also want to spend some time talking about “change.” Change is something that we all know is going to happen and it can sometimes be disorientating. When you’re early in your career, you’re more likely to embrace change. As you become more vested in your ways, you’re less likely to look forward to change. The situation with the Social Security System is a good example. Polls show that the older people are the less likely they want to make changes to the system. Isn’t it ironic that early in your career, you have all these new ideas that you think nobody will listen to but later in your career you’re more inclined to like the status quo. Navy Admiral’s have a way of getting their point across without having to use a lot of words. Recently, an Admiral said, “If you don’t like change, you’re really going to hate irrelevance!” My point is that not only as new engineers, but also throughout your career, you need to drive change. Sometimes it’s going to be uncomfortable; sometimes, it’s going to take courage to challenge the status quo. But if you don’t do it, you’re accepting a role as part of the crowd rather than one as a leader.

It has been said that if you’re one step ahead of the crowd, you’re described as a visionary and a leader. If you’re two steps ahead, you’re a crackpot or a kook. I’m happy to say that there are times in my career when I’ve achieved the “crackpot or kook” status. With the determination that comes from my Kansas upbringing, some of my most important contributions have resulted. I’ll mention two. One is in the area of nonlinear dynamics and chaos theory. About ten years ago, I began to recognize that some of this science could be incorporated in applications and I started hiring PhD’s with degrees in physics and chaos theory and began writing proposals for funding. At that time, I think that most people would have said that I was well beyond “visionary and leader” status. I think that I was about the only crackpot hiring people with these degrees, so I got my pick of the best. A couple years ago, the head of the Applied Chaos Laboratory at Georgia Tech University publicly stated that if my group was at a university, they would
be #1 in the country in this area based on the number of PhD’s, the number of refereed publications, and the amount of funding we had. But numbers weren’t my goal. I was working to apply the technology. I’m happy to report that we are now beginning to see the power of this “disruptive technology.” By that, I mean it’s going to create a disruptive revolutionary change vice a steady evolutionary change. Let me give you a couple examples. In the lab, we have a working fluxgate magnetometer that can be built entirely on a chip, costing only a few dollars, that is as sensitive as what you would pay $10,000 for today. We have built and tested a nonlinear phased array antenna that performs better than conventional phased array antennas and costs much less. Just this week we demonstrated a nonlinear adaptive filter in a real-time test in a communication channel that was completely unusable due to jamming. With the nonlinear filter, we not only found the signal but also demonstrated a bit-error-rate of one bit error for every 10,000 bits sent—about the best that is ever achieved in pristine conditions. And just so you mechanical engineers don’t think that this only applies to electrical engineers, one of the PhD’s that I hired developed the theory, demonstrated it in the lab, and wrote his dissertation on the use of control of chaos to lean out the fuel/air ratio in a pulse jet to 22% below where normal flame out occurs. Based on these results, I think that I’ve regressed to the point that I’m no longer considered a crackpot or a kook. Ultimately, I believe that this technology will impact just about everything from medical applications to engineering or new computing technologies. I believe this because just about everything you’ve been taught has been “linearized” so that you can solve the problems. We used to think that we were only loosing a little performance on the margins but what we’re now learning is that by fundamentally changing the design to incorporate nonlinearities, quantum improvements in performance are possible. In his report to the Congress on January 31 of this year, VADM Cebrowski, head of the Office of Force Transformation for the Secretary of Defense, specifically mentioned our work.

Another area where I achieved crackpot and kook status was as a result of my belief in Cold Fusion. We started conducting experiments shortly after a press conference in March 1989 by Fleischmann and Pons announcing that they had created fusion in a bottle by electrolysis using a palladium cathode and a solution of heavy water. They were quickly dismissed by the scientific community because their experiments were not very repeatable, their data had holes in it, and it didn’t match conventional theory because it didn’t emit excess neutrons. Since 1989, we’ve conducted hundreds of experiments and published 24 papers in refereed technical journals, including one that was just approved for publication by the Journal of Electrical Analytical Chemistry. Additionally, we just responded to favorable referee reports for another paper that we submitted to “Naturewissenschaften,” one of the premiere international technical journals in which we present our experimental evidence for transmutation. In other words, we’re making significant quantities of nuclei of Al, Mg, Si, Fe, and Zn to name a few, in experiments where they didn’t exist when the experiment was initiated. In addition to papers in technical journals, our work has been featured in an article in the Sunday Times of London and in an article in the March 28, 2003 New Scientist. After presentation of our paper at the 11th Annual Conference on Cold Fusion in France, we were asked to write a book that we’re working on now. We’re just getting started but we have the title; “Theory Guides, Experiment Decides; the scientific case for Cold Fusion.” I believe that our experimental evidence is compelling. I’m sorry that it doesn’t fit the current theory but that’s why they call it a theory. So with regard to cold fusion, I’m probably still a crackpot but I think that will change within a few years if not sooner.

For the graduates, I believe that your generation will be known as the 9/11 generation. You were probably in your freshman year in college on that fateful day that signaled the beginning of the Global War on Terrorism and a lot has happened since then. Afghanistan has been freed from the Taliban, schools are open that include both boys and girls, open elections have been held in which women not only could vote but they could also hold office, and a democratic government is in place. The same process is happened in Iraq with elections last January. Something that you may not realize is that the average age of the soldiers, sailors, marines, and airmen who liberated these countries is in the early-20’s, about the same age as the graduates here tonight. Your generation is already driving change. In addition to Afghanistan and Iraq, in the last 2 years, free elections have also occurred in Palestine, in the Ukraine—twice because the first ones were rigged, and are planned in Egypt. Along with new governments, new economies are emerging. This “change” in the Middle East is occurring on a tectonic scale in size and at supersonic scale in speed. As a data point, it was roughly 130 years after the revolutionary war in the US before women were allowed to vote. History has named the generation that fought WW-II as “The Greatest Generation.” They won WW-II at a huge sacrifice and when they came back, many went to school on the GI Bill, and 20 years later, they put a man on the moon. I was in graduate school, watching TV about 2 a.m. in the morning on the day in 1969 when Neil Armstrong said those now famous words, “That’s one small step for man, one giant leap for mankind.”

With the contributions in the Middle East, I believe that your generation is well on its way to greatness. Change will bring many challenges but I’m sure that you’re up to it and I look forward to your contributions with great anticipation.

Congratulations again on your accomplishments and thanks again for this recognition.
Assistant Professor of Mechanical Engineering Lorin Maletsky was among the first faculty members to be visited by the “Surprise Patrol” during the first two days of class at the University of Kansas this fall. The patrol, led by KU Chancellor Robert E. Hemenway, was busy handing out $5,000 Kemper Awards to unsuspecting KU faculty. The Kemper Awards recognize excellence in teaching and advising. Also traveling with the patrol were representatives from Commerce Bank of Lawrence and the KU Endowment Association. In all, 20 KU professors were honored with Kemper Awards, and $100,000 was distributed during the first weeks of the semester.

The W.T. Kemper Fellowships for Teaching Excellence recognize outstanding teachers and advisers at KU as determined by a seven-member selection committee. Now in the 10th year, the awards were established by a $500,000 fund from the William T. Kemper Foundation-Commerce Bank, Trustee, and $500,000 in matching funds from the KU Endowment Association.

The William T. Kemper Foundation was established in 1989 after Kemper’s death. It supports Midwest communities and concentrates on initiatives in education, health and human services, civic improvements and the arts.

Here’s what the nominators had to say about Kemper finalist Lorin Maletsky. “Maletsky has been a member of the KU faculty for five years. He takes pride in being not only an instructor for his students but also a leader and, if need be, an entertainer. Maletsky is not afraid to go the extra mile for his students and will do whatever it takes to help them succeed, including helping them in classes besides the ones he teaches. This dedication to students is why he often is described on student evaluations as a ‘great instructor with a passion for the students.’”
Mechanical engineering students from the University of Kansas swept a national contest designed to make amusement park rides more accessible to people with limited mobility. Working in four-member teams, the KU students took first, second and third place in the “Access to Fun” contest sponsored by the International Association of Amusement Parks and Attractions.

The contest hat trick came as staggeringly good news to members of the department. “I was surprised,” said Assistant Professor Lorin Maletsky, who taught the Mechanical Engineering Design Process course in spring 2005. “We’ve never done this before.” Each team proposal was judged by experts gathered by IAAPA and the U.S. Access Board, the federal agency responsible for developing rules governing access in America.

The winners of the “Access to Fun” design project are:

- **First place:** Tyler Docking, Matthew Hess, Carla Hines and Francis Hitschmann
- **Second place:** Chris Anderson, Jesse Burns, Chris Dvorak and Tanner Rinke
- **Third place:** Adrien Bender, Randy Clover, Paul Rankin and Mark Wolfe

Maletsky normally has students in his junior-level course complete a project tied to a broad and open-ended theme. One student brought this contest to Maletsky’s attention shortly after the start of the spring semester. Several criteria for the competition fit the structure of the course so Maletsky allowed teams to use the design competition as the basis for their class project. Four of the teams in Maletsky’s class chose the competition task for their project. Three teams submitted their design to the contest.

“I was impressed,” Maletsky said. “I’m always impressed by what the students produce.” Students who took part in the project gave it serious consideration, he said. Team members studied regulations outlined in the Americans With Disabilities Act and some even traveled to a nearby amusement park during the off-season to better visualize a typical log flume ride and gather information from park engineers and staff.

The KU teams won monetary awards of $5000 for first place, $500 for second place and $200 for third place. The first place team also won funds to construct a realistic mock-up of its design to be showcased at the IAAPA Attractions Expo 2005 Annual Conference and Trade Show, Nov. 14-19 at the Georgia World Congress Center, Atlanta. The students had to complete the mock-up project as an extracurricular activity. Such experience may prove helpful as the students build their senior design project in the spring semester.

“We hope this exercise has stimulated a train of thought on a design to enable individuals with limitations to use more amusement park rides,” said J. Clark Robinson, IAAPA President and CEO. “Each of these teams demonstrates great ingenuity.”

Left to Right: Francis Hitschmann, Matthew Hess, Tyler Docking, and Carla Hines take a break from presentations for their trip to IAAPA conference to show off the model (left) of their top place design.
A Family History of Engineers

By: Cara Zimmerman

This string of engineers all started with Frank A. Russell in 1908 when he earned a degree in civil engineering here at KU. He saved the $65.00 needed for his first year at the University, 1901-1902. He worked during summer vacations on a farm and had to take time off from his studies to save money, working first as a draftsman and then as a rodman for Santa Fe until he was able to finish his degree in 1908, and g’18. He was on the faculty at the University of Kansas for 28 years, from 1921 to 1950. He was the professor of Railway Engineering in the Civil Engineering department, chairman of the executive committee that managed the school in 1936-1937, and a long-time member of the Lawrence City Council. Frank Russell served as the acting dean from 1936-1937.

Frank had 4 children, all of whom went on to KU. His sons Robert and Laurie both continued on in engineering, but this time it was in mechanical engineering. Robert A. Russell graduated in 1937 and Laurie R. Russell earned a BSME in 1943. Laurie Russell married June Hammell Russell a KU graduate, f’1943.

Laurie Russell has three children, one of whom became an engineer and another who married one. His son Stuart went to Purdue for a BSME in 1973 and his daughter Annette (KU c’72, c’73) married Robert J. Zimmerman who received his BSME in 1972.

Robert and Annette have three children, two of whom came to KU. Russell Zimmerman earned his BSME in 2000, and Cara Zimmerman is still at KU working towards her BSME and will be graduating in December of 2006. The other fourth generation engineers are not at KU, but they are still wonderful. Katie Russell is the daughter of Howard Russell and she earned her BSEE at Northwestern in 2005. Lisa M. Russell, daughter of Robert B. Russell, earned her BSME at UCLA in 2005.

Cara said that she found it funny and interesting that her brother, dad and her have all had two of the same professors: Professor Umholtz and Dr. Burmeister. She told Professor Umholtz about it and he went through his grade books and found both her brother and dad’s grades. He still had them!

Here is a list of all the engineers in the family. All are from KU unless noted in parenthesis.

Generation 1:
Frank A. Russell, BSCE, 1908

Generation 2:
Robert A. Russell, BSME, 1937
Laurie R Russell, BSME, 1943

Generation 3:
Howard A. Russell, BSME, 1965
Andrew D. Russell, BSAE, 1970 MSME, 1979
Robert B. Russell BSAE, 1970
Robert J . Zimmerman, BSME, 1972 (married
Annette Russell Daughter of Laurie Russell)
Stuart Russell, BSME (Purdue), 1973

Generation 4:
Rusty Zimmerman BSME 2000
Cara L. Zimmerman BSME expected 2006
Katie Russell, BSEE (Northwestern), 2005
Lisa M. Russell, BSME (UCLA), 2005

Above, the Russell Family at their reunion.

Do you have a KUME generations story? If so, please email us at kume@ku.edu!
Charles Gabel, Engineering machine shop supervisor, has been selected as KU's Employee of the Month, for October. He was awarded this honor due to his outstanding service and dedication to the School of Engineering, its faculty, and undergraduate and graduate ME students. Charles was chosen from the many applications that were submitted from all over the University.

Beyond his role as a machinist, Charles has become an integral part of the education of ME students. He helps to instruct the ME 346 course and also helps with senior design classes. He is always willing to help anyone any way he can. The Department appreciates all of his hard work, and we feel very fortunate to have him! Thank you Charles!

Left: Charles with his family:
L to R: Elizabeth, Ian, Charles, and Garrett Gabel.

Right: Charles shakes the hand of the Provost, Dr. David Shulenburger, after receiving the Award for University of Kansas Employee of the Month.

The Mechanical Engineering Department would like to wish you the Happiest of Holidays!
The KU E’ship TLC:
Supporting Entrepreneurial Thinking
in the Classroom and Beyond

By: Elizabeth A. Friis and James G. Baxendale
University of Kansas

A university-wide program in entrepreneurial thinking referred to as the Multidisciplinary Entrepreneurship Thematic Learning Community (or E’ship TLC) was formed in the Fall of 2004. Co-sponsored by the School of Engineering and the Office of Technology Transfer, the E’ship TLC meets weekly and is free and open to the public. The E’ship TLC premise is that entrepreneurial thinking skills needed in starting and running a small business are the same as those needed in various levels of management in any size company. In the E’ship TLC, individuals interested in innovation, business and technology development learn together in a cost and resource efficient environment. Successful entrepreneurs and regional experts in business and related fields present lectures on basic business principles, legal, and regulatory topics. The E’ship TLC is available for use in any course in which specific topics presented are desired. New multidisciplinary technology-based entrepreneurship courses (e.g. ME 760) have been formed in which students are required to attend the E’ship TLC.

KU BMES

BMES is an engineering society dedicated to the application of engineering principles to medicine and biology. The society strives to encourage professional growth of its members through annual conferences, publications, and career services, and to promote the biomedical engineering field. The officers include: Cecile Hernandez, President, Merhdad Hosni, Vice President, Rob Rosasco, Treasurer, Lauren Tice, Secretary, and Curtis Haverkamp, Web Designer/ESC Representative. The BMES website is: http://www.engr.ku.edu/~kubmes/.
Dan Beal, 1991
Company: McElroy’s Inc.; 3209 S. Topeka Blvd., Topeka, KS 66611
Title: President
News: Dan is married to Paula Beal, KU School of Education Class of 1993. He has two sons, Braden, age 9, and Parker, age 5. For more information about his company, you can visit the website at: http://www.mcelroys.com/AboutMcElroys/CompanyHistory/default.aspx.

Carl Hood, 1962
Company: Northrop Corp.
Title: Retired
News: Mr. Hood is now retired from Northrop Corporation. He now spends his time enjoying family, traveling, mechanical challenges, reading and hiking. He also enjoys spending time at his vacation home in Michigan. Carl’s father, Henry J. Hood, was a KUME (class of ’32) and worked for Kodak. His uncle, Manley Hood, was in the first class of Aeronautical engineers from KU. He worked for NASA and during his career he met the Wright Brothers and Neil Armstrong. Carl’s grandfather, George J. Hood, was also a KUME (class of 1902) and taught at KU from 1902 to 1952.

Thomas E. Jones, 1967
Company: Chad Therapeutics
Title: Chairman
News: Mr. Jones is still working in the medical device field. He tries to play golf on a regular basis. He has three daughters and six grandchildren. They help to occupy him and his wife, Kay.

Joseph Kadera, 1951
Company: Boeing North American
Title: Member of Tech. Staff
News: Mr. Kadera is now retired after 40 years with the company. He is now spending time having fun with his family.

Walter L. Prater, 1978
Company: Novellus Systems
Title: Meteorologist
News: Walter received his MSME from San Jose State University, MS in Materials Engineering from San Jose State University and has 17 US patents.

Susan Allen Slattery, 1984
Company: Willbros Engineers, Inc.
Title: Lead Mechanical Engineer for Facilities
News: Susan currently working as the Lead Mechanical Engineer for Facilities for Willbros Engineers, Inc. which is a consulting engineering firm serving the oil and gas industry. She is married to Jeff Slattery and they have two daughters ages 9 and 12. She also received her MBA in 1991 at the University of Arkansas.

We Need Your Help!

In December, the School of Engineering will be sending out emails to ask the ME alumni who have graduated in the last 7 - 8 years to fill out an online survey of your job and career status. We know that you are probably asked to help with surveys from various sources, but this survey will help by directly providing input for our ABET Accredidation visit in the fall of 2006. So, if you are able to help, we would greatly appreciate your time spent filling out the survey.
In order for us to know what you are doing and inform others in future newsletters, please drop us a note or fill in this form and return it to: ME Vibrations Newsletter, University of Kansas, Mechanical Engineering Department, 1530 W. 15th St., 3138 Learned Hall, Lawrence, KS 66045. Or, send an email to kume@ku.edu; and visit our website at http://www.engr.ku.edu/me/.

Name __
Class __
Address __
Company ____________________________ Title ________________________
News about yourself, your family, and/or your job: _________________________
__
__
__
__
__