KUME Alumni,

Meet our newest faculty members below and use the articles in this newsletter to see what’s happening in the Department. We have news from the faculty, the students, and you, our alumni – and we trust that news will give you a flavor of our experiences and direction.

We do have a very special request of you on page 10. We know that you get a variety of requests from several sources, asking for your help; but we could greatly use your assistance in our continual efforts to assess and evaluate the quality of our program. Thus, if you could fill out the survey on page 10 and return it to the Department, you will have a direct impact and will be much appreciated. The results of this survey will be most important for KU-ME, as we employ your feedback for our upcoming 2006 review for accreditation.

Thanks so much for your time and help! As always, we look forward to hearing from you!

Dr. Sara Kieweg

Dr. Sarah L. Kieweg’s research focuses on applying engineering principles of transport phenomena to the characterization and development of microbicides. There is growing interest and need within the scientific and world health advocacy communities to develop microbicides. Microbicides are topical formulations that protect vaginal or rectal epithelium from sexually transmitted infections. Microbicides inactivate pathogens, such as HIV, using an active ingredient within a delivery vehicle. The vehicle may be a gel, foam, dissolving tablet, or other material applied topically to the epithelium.

The focus of Dr. Kieweg’s research program is on two major areas: (1) mathematical simulations and flow experiments of the spreading of viscous non-Newtonian fluids and (2) mathematical simulations and experiments of HIV transport of the functionality of new anti-HIV microbial compounds and delivery vehicles. Her long-term research objectives are to develop optimization tools for topical drug delivery. Her research also has applications in general vaginal drug delivery, vaccines, industrial fluid flows, and microfluidics. She looks forward to providing opportunities for graduate and undergraduate student research and initiating multidisciplinary collaborations with other researchers at KU and KU Medical Center.

Dr. Kieweg was born in Lawrence to Kansans and KU alumni (Kathy Driscoll, B.A. 1974 & Jim Driscoll, B.S., M.S. & Ph.D. 1977 in Computer Science). She received her doctorate in Biomedical Engineering from Duke University. She also has a Bachelors degree from Duke and a Masters in Bioengineering from the University of California, San Diego. In her spare time, she likes reading, biking, swimming, kickboxing, and hiking with her husband, Douglas. For more information about Dr. Kieweg, please email her at kieweg@ku.edu.

Dr. Albert Romkes

Dr. Albert Romkes was born in 1972 in Urk, a small fishing town located approximately 40 miles East of Amsterdam, The Netherlands. Dr. Romkes started his undergraduate studies in Aerospace Engineering at the Delft University of Technology in The Netherlands. He then moved to Austin, Texas, in 1997, where he finished his Ph.D. in Aerospace Engineering at The University of Texas in 2003. For the following two years, he stayed in Austin and worked as a postdoctoral fellow at the Institute for Computational Engineering and Sciences.

Dr. Romkes research interests are in the broad areas of computational mechanics and numerical analysis (Finite Element Methods) with an emphasis on the computational modeling of multi-scale phenomena. For the past three years his efforts focused on developing computer simulations of the macro- and micro-scale response of composite engineering materials. An important element in this work is the development of an adaptive analysis algorithm that provides computational predictions of features of the physics that are of specific interest to the analyst. The simulations are designed and run adaptively so as to satisfy a user-defined error tolerance in the quantity of interest (i.e. Goal-Oriented Adaptive Modeling). Computational resources are therefore minimally employed while maintaining reliability of the simulations. To establish such a modeling algorithm, research inevitably involved deriving a framework for estimation of modeling and (numerical) approximation errors. Most recently, his research efforts have broadened by incorporating uncertainty in and statistical nature of data (stochastic and worst-case scenario analyses) and investigating multi-scale problems that include the behavior on the nano-scale (Molecular Dynamics models). His future interests are to extend the methodology of Goal-Oriented Adaptive Modeling to multi-scale applications in bio-engineering science.
The annual ME Awards Banquet was held on April 29, 2005 at the Alvamar Country Club in Lawrence. The banquet was held to honor graduating undergraduate and graduate students, scholarship recipients, distinguished alumni, and other students’ achievements. Distinguished Alumni Frank Gordon and Ken Razak spoke, giving advice to those graduating. Everyone had a great time and we hope to see you all again next year!

Below: The graduating Undergraduates, Master’s and Ph.D. students gather at the Alvamar Country Club for a picture.

Above: Dr. Peter TenPas presents the award for Outstanding Service to senior Christopher Zellers.

Right: Phil Martinez accepts the award for Outstanding Student Helper.

Below: Dr. Carl Luchies and Ryan Mills, President of πΤΣ, honor the new members of the πΤΣ Honor Society.

Below: Dr. Peter TenPas presents the Lindquist Family Memorial Scholarship to (from left to right) Tristan Moody, Logan Johnson, Anthony DeFilippo, and Jonathan Bridges.

Below: Students, Alumni, and Faculty listen as Distinguished Alumnus Frank Gordon gives his speech.
The next two pages name the students, alumni, faculty, and staff who received special recognition at the banquet.

Graduating Seniors

Spring 2005

Ahmad Abu-Ali
Blaine Barnard
Arturo Benavente
Christopher Bowman
Kelley Briant
Bryan Bunn
James Console
Gregory Denton
Bryan Dumler
Jamie Fransen
Adam Goellner
Russell Heinen
Charles Henry
John Igo
Laurie Luhar
Gordon (Mike) Lynn
Thomas Markman
Lindsey Morris
Matt Quinlin
Tyler Stone
Sean Tilley
Gregory Vannorsdel
Christopher Veit
Robert Ward
Aaron Weigel
James Winblad
Tony Wong
Christopher Zellers

Fall 2005

Daniel Bader
Jonathan Bridges
Jesse Burns
Bradley Christiansen
Joshua Cochran
Matthew Hess
Aaron Marney
Drew Marting
Tamara Miller
Tristan Moody
Dayvid Prahl
Matthew Thornton
Heather Van De Veer
Matthias Van de Liefvoort
Kelly Warrick

Graduating Ph.D. 2005

Feiqi Zhang

Graduating Masters 2005

Ghazi Abdul fattah
Srikanth Allu
Sachin Angal
Lourdhusamy Anthoniraj
Maneesha Arashanapalli

Scott Chapman
Alexander Chan Man Chong
Chadd Clay
Timothy Craig
Ankur Dayal
Kedar Deshpande
Abhijit Dumbre
Monte Englekermeier
Nicolas Jaumard
Srianjana Kilambi
Kyung Pyo Kim
Lu Li
Anupama Maduri
Rajesh Maduri
Kannan Meyoor
Sarika Naidu Pappala
Ravi Ramakrishna Pillai
Robert Richards
Aaron Robbins
Amarnath Saripalli
Joseph Solty
Sudarshan Singh
Bhaskar Thoomukunta
Loletta Wong

Biomechanics Option

Kelley Briant
James Console
Matthew Quinlin
Matthias Van de Liefvoort
James Winblad

ASME Officers

Aaron Weigel – President
Phil Martinez – Vice President
Matthias Van de Liefvoort – Treasurer
Gregory Denton - Secretary

ΠΤΣ Officers

Ryan Mills – President
Jamie Fransen – Vice President
Mark Pacey - Treasurer

ΠΤΣΣ Officers

Spring 2005 ΠΤΣΣ Initiates

Logan Johnson
Leighton LaPierre
Gina Posladek
Brent Uhrig
Seth Weisbrook

Mechanical Engineering

Senior Design Teams

Hallmark MBO/Shaker Team

Christopher Bowman – Leader
Matthew Quinlin

Dynatech Team

James Winblad – Leader
James Console
Robert Ward

Hallmark Webtron Team

Jamie Fransen – Leader
Kelley Briant
Matthias Van de Liefvoort

Hallmark Oven Team

John Alexander – Leader
Ahmad Abu-Ali
Aaron Anderson
Kasonia Kisinghani
Scott Swan

Boeing Explosion Containment Team

Tamara Miller – Leader
Daniel Bader
Dayvid Prahl

Black and Veatch Team

Bryan Bunn – Co-Leader
Tyler Stone – Co-Leader

Rehrig Team

Joshua Cochran – Leader
Matthew Thornton
Kelly Warrick

Sauer-Danfoss Team

Bryan Dumler – Leader
Gregory Denton
Lindsey Morris

Team Hybrid Energy

Aaron Weigel – Leader
Charles Henry
Sean Tilley

Formula SAE Teams

Christopher Zellers - Leader

Chassis Team

Gregory Vannorsdel – Leader
Arturo Benavente
Russell Heinen
Christopher Veit
In future newsletters, we will continue to run favorite memories of alumni. Please send us memories from your time in Mechanical Engineering at KU! This can be anything from a favorite class or instructor to a memorable experience that you would like to share with others. We look forward to hearing from you!
I have to admit that I can’t take credit for all the accomplishments ascribed to me – although I may deserve them. I must confess however that I have been continuously amazed at all of the opportunities that have been offered to me. I conclude that I must have had a patron saint watching over me.

I distinctly recall telling my mother when I was a sophomore in high school that I was not going to college. Her reply was to flatly state that I was. She probably was my original patron saint. We lived on a subsistence farm in Trego County, western Kansas, and it was a little difficult to see where money was to come from to go to college. But Montgomery Ward had a program where five percent of mail orders sent in on order blanks with a student’s name on them were credited to a college account for that student. My mother blanketed western Trego County with order blanks and in the fall of 1935 there was enough money, plus a part-time job, to pay my first year. My first year cost the grand sum of $340, including board, books and tuition. Tuition was $18.75 per semester.

But why KU? It so happened that the Probate Judge of Trego County was a good friend of the folks and a KU grad. He said that I was going to KU – and that was that. He arranged for me and three other fellows to go to KU. There was my second patron saint.

How else can I explain the opportunity to take classes from professors such as George J. Hood, Frank Brown, J.O. Jones and thermo teacher Ambrosius. I don’t remember all of my professors but I remember those – I still have, and use, Browns mechanics book to the point its cover has come off. I was collecting patron saints all along.

And how can I explain that I stayed in a rooming house at 1309 Ohio? Another roomer in the house was Fred Gustawfson, an instructor in ME and taught the wind-tunnel lab. I pestered him until he agreed to let me come down to the tunnel (it was under the stadium) and help him run it. In a couple of years, Fred got his masters and left to go with NACA to become Mr. Helicopter at the Langley Lab. I was the only one left on campus that could run the tunnel. So I became an assistant instructor (the lowest rung on the academic ladder) and taught the wind tunnel lab. The first graduates in Aero Engineering in 1940 were my students.

And how else can I explain that in 1939 FDR decided that the US was apt to get into a war and this country needed pilots. KU was selected as one of the first dozen schools around the country to give the Civilian Pilot Training Program. Again, I was the only one on the campus that knew anything about airplanes and so I was appointed as Coordinator of this program and taught all of the ground school classes – aerodynamics, engines, instruments, meteorology and others. I had not taken a class in any of these subjects (except aerodynamics) but soon I became proficient.

My patron saint was still active. The program came up short in the number of students – so I volunteered. It so happened that a pilot student has to take the ground school and I was in the unusual position of taking a course that I was teaching. At least I got a good grade.

So here I was in 1940 with a pilot’s license with about 100 hours of flight time, including acrobatics. Just think – this was just 37 years after the Wright brothers flew. How time flies.

Through my involvement with the CPT, I met coordinators from other schools, including the University of Wichita. The aircraft companies in Wichita were busy turning out lots of airplanes and needed aeronautical engineers – a rare commodity at that time. The companies had hired architects, civil, sanitary, surveying and other types of engineers, but they needed people who could design airplanes. Guess what? My patron saint was looking after me and when I was offered the job, I jumped at it. I had over 30 students, many old enough to be my father, but we had a great time. Through this activity we were able to build the foundation that led to the College of Engineering at Wichita State University.

In 1945, we had established a department of aero engineering in the College of Business Administration and Industry. The war was winding down and I got a telephone call from President Jardine. He had two people in his office and they wanted to know if we would build a wind tunnel at WU. He suggested – rather positively – that I come over to his office. So I had all of 10 minutes as I walked across campus to consider the situation. I was asked how much it would cost to build a tunnel and I picked the biggest number I could think of and said $100,000. Within a couple of days, the money was in the bank. We put the tunnel into operation in 1948 and it is still running after 54 years. It has just undergone a multimillion-dollar upgrading to the digital age, but the basic structure justified this expenditure.
In 1953, I joined with four other people to buy and cooperatively use an airplane. One of those people was an attorney. He had a case in a nearby county involving an automobile accident with no testifying survivors and wondered if I could help him to analyze the cause of the accident. I dug out my Browns mechanics book and worked it out, testified in court, he got a verdict, the verdict was appealed and my name went into the appeal record. That was like a beacon in the dark and I started getting calls from attorneys. In 1970, these calls multiplied to the point where I then left a position as Professor of Engineering at K-State and took up the role as a consulting engineer giving expert testimony in court.

I can't claim that I gained knowledge about testifying when I was at KU, but I certainly gained the knowledge to perform analysis – and that is the heart of the matter. As a result, I spent the next 20 to 25 years testifying in courts all over the country. Many times I was asked when on the witness stand if I had taken a course in accident analysis. My reply was, "No I had not, but I have taught them."

Now I need to put something into perspective. I claim a patron saint but there is no heavenly person. I can't claim divine guidance but I do assert that knowledge I gained and experiences I had here at KU made all of this possible. It was the ability to recognize opportunities and respond to them, based on my knowledge and confidence, much of which I acquired here at KU. Perhaps the most important tenet was the willingness to move into new arenas, realizing that the foundation that I gained here would serve me in good stead. Putting it more simply, I developed the conviction that acquiring knowledge and acquiring abilities was something that needed to be continuously addressed. This is summarized in two words: Lifetime Learning.

If you have studied history, you will have encountered the middle ages, the dark ages, the Industrial and other ages. The important point that I want to make is that this world now is in a Knowledge age. Knowledge is power, regardless of how it's achieved. You are in a phase of your life in which you are moving through the education system – but it does not – and cannot – cover all aspects of knowledge in this burgeoning knowledge age. Now, as never before in history, you face the necessity to gather additional knowledge throughout your lifetime.

Even now, engineering educators are pondering the question of how to reconstruct engineering education. I particularly believe in the words of Theodore Von Karman, one of the pioneers in aerodynamic theory, who described what engineers do. He stated that engineers designed under constraint. He went on to distinguish between science and engineering saying, “science is about understanding nature, understanding what it is. By contrast, engineering is synthetic, it is about creating what has never been.”

You must face the reality that you have just started your acquisition of Knowledge. You will encounter, and must expect, radical changes and additions to the knowledge needed to function in a global society. The important thing is that you must build as broad a background as possible so as to be able to take advantage of opportunities that will arise.

As an engineer, you must realize that you must be able to DO something. Something is to be designed and built – and you must step up to this requirement. You will realize that there are gaps in your knowledge and you must continuously strive to fill those gaps.

I thank KU for bestowing this honor on me and, above all, I thank KU for giving me the capability of creating what has not yet been.

Shawn E. Caradine, 1985
Company: Caradine Home Restoration, LLC
Title: CEO – Owner
News: Shawn is self-employed working in Rehab housing in the St. Louis, MO area. His company was the #1 rehabber in St. Louis in 2002. He is married with 2 children, whom he hopes will be Future Jayhawks! He received his MBA in 1992 and an HVAC degree in 1993.

Charles W. Pauls, 1969
Company: N.C.R.A – McPherson, KS
Title: Chief Engineer
News: Charles is retired after 33 years at N.C.R.A. He is married to Carolyn (Zimmerman) Pauls – (ed. 1968). He has two children, Amy & Eric, both are KU Grads. Charles recently moved to Lawrence.
Faculty Updates

Dr. Lorin Maletsky
Dr. Lorin Maletsky and investigators in the Experimental Joint Biomechanics Research Lab are trying to better understand what happens in a human knee during an athletic cutting maneuver that sometimes causes the anterior cruciate ligament (ACL) to tear. Using a custom designed and fabricated piece of equipment called the Kansas Knee Simulator, researchers are able to apply loads and motions on a human knee that are similar to what someone’s joint would experience naturally. Typical simulated activities, including walking and climbing up stairs, are used in the lab to evaluate the performance of total knee replacements; however, injury to someone’s ACL occurs during much more demanding activities, while playing soccer or basketball, for instance. Researchers in the lab have developed loading profiles to simulate the loads and motions from an athlete making a hard cutting maneuver where they quickly change direction. Although there is a lot of interest and research in ACL injury and reconstruction, no one has yet been able to actually simulate a realistic activity that causes a physiological tearing of the ACL. With funding from the Centers for Disease Control and Prevention, investigators at KU hope to do just that. Working in collaboration with Dr. Jeff Randall, M.D., from Lawrence Orthopedic Surgery and Dr. Aric Warren, Ed.D., Athletic Training Program Director in the Health, Sport, and Exercise Science Department at KU, researchers in the School of Engineering will use the knowledge gained from this testing to evaluate different ACL reconstruction techniques or possibly modify training methods for high risk athletes, such as younger women.

Dr. Sara Wilson
The lab has been pretty busy this summer with a number of students presenting their work at conferences across the nation. During the beginning of the summer, Lu Li and Dr. Wilson presented two papers on the risks of occupational vibration exposure at the ASME Summer Bioengineering Conference in Vail, Colorado. At this conference, Lu Li won 2nd place in her division for her work. Amarnath Saripalli presented a paper on dynamic ankle stability at the 7th Symposium on Footwear Biomechanics in Cleveland, Ohio at the end of July. Joe Soltys and Maneesha Arashanapalli also presented papers on low back control dynamics at the XXth Congress of the International Society of Biomechanics in Cleveland, Ohio during the first week in August.

Special Congratulations

Dr. Sara Wilson received the Miller Professional Development Award for outstanding contributions to research in the School of Engineering. Each of her areas of research – low-back pain, scoliosis, and ankle instability – can be directly applied to helping people as they go through their daily activities. She has obtained grants from the National Institute of Occupational Health and Safety, the National Institute of Health, and the Whitaker Foundation. Dr. Wilson's work has also appeared in several peer-reviewed and conference publications. Dr. Wilson said, “The graduate students in biomechanics in the ME department deserve much of the credit. Their hard work and determination has made our research program successful.”

Dr. Lisa Friis received the Miller Professional Development Award for outstanding contributions to service in the School of Engineering. Dr. Friis has been an instrumental participant in the Kansas Biosciences Authority. She also has provided leadership and direction in some of KTEC’s biosciences activities. Nationally, she has been an active member of the Society for Biomaterials. She is the driving force behind the School of Engineering’s Entrepreneurship Thematic Learning Community (E’ship TLC), which strives to give KU students of all disciplines exposure to idea development, product design, technology transfer and business strategy.
2005 was an excellent year for the K.U. Formula-SAE team (F-SAE). We managed K.U.’s best finish of 12th place overall at the Detroit competition beating out 108 other teams from around the world. The 2005 F-SAE vehicle was a significant step forward from any vehicle we had ever taken to Detroit. Removing 30 lbs from the ‘wet’ weight of the vehicle and lowering the center of gravity by over 2.5 inches vastly improved the performance of our vehicle. This was evidenced by placing 9th in the endurance competition and 16th in the auto-cross with some excellent driving by juniors Nick Roberts and Stuart Hembree. The competition was not without problems for us, due to an incorrect setting in the Engine Control Unit (ECU) we were forced to run the first day of competition with a pretty severe misfire which hurt our performance in several of the dynamic events. The ECU issue was resolved later that evening and when the vehicle was put on the chassis dyno we posted over 80 horsepower at the rear wheels. Even as well as we performed, there is still significant room for improvements. By incorporating the Data-Acquisition unit we received late last year, K.U. F-SAE will be able to further analyze our vehicle’s handling characteristics and continuously improve the suspension geometry and vehicle handling. All of our success would not have been possible without the support of the Mechanical Engineering Department.

The 2005 KU F-SAE Team would like to thank: Lucas Jacobsen, Charles Gabel, Justin Lohrmeyer and the rest of the M.E. Department and Engineering School staff for all of their help and support over the past year!

Special Thanks to our Supporters and Donors
We want to sincerely thank all of the individuals and organizations that contributed to the ME Department throughout the 2004-2005 school year. These thoughtful donations have had a tremendous impact on the quality of education made available for the students and on the faculty’s ability to pursue the Mission and Goals of the Department. Without your dedication and enthusiasm, the Department wouldn’t be as successful. Thank you!
Individual Donors
Adamec, Thomas C.
Ballard, Albert L., Jr. & Barbara W.
Banta, Andrew & Linda Mae
Barhydt, Fred
Barnard, Charles D. & Carolyn B.
Bateman, Jane
Bauleke, Maynard P.
Bauman, L. Joseph & Joanie
Bodecker, Bruce F.
Bona, Samuel R. & Lisa Mott
Bowen, Montie J.
Bridges, Steven D. & April M.
Brown, Phil A. & Kristin
Burger, Philip M. & Micheline Z.
Canada, Eric E.
Carlson, John
Clutz, Charles N.
Cooper, George L.
Cousins, Donald & Norma J.
Creighton, Donald L. & Monica A
Cutler, Jennifer
Danner, Eric
DeBiase, David M. & Patricia L.
DeVore, Harold G. & Bonnie L.
Eckhardt, John Jr.
Ellis, Robert M.
Ennis, Robert L. & Sharon K.
Euler, Stephen A. & Elizabeth A.
Fairchild, Andrew & Amy Carter
Fandel, Michael D.
Faries, Stanley C. & Patricia M.
Faught, Ronald J.
Felzien, Bernard
Fetterman, Paul M. & Shery
Fitzgerald, Richard P.
Fox, Fred J. & Grace
Francis, William R.
Fransen, Alan G. & Judy K.
Garrison, T. Michael
Gillespie, LaRoux K.
Glenn, Richard T.
Gordon, Frank E.
Gore, James J.
Graunke, Kerri A.
Greer, Brandon
Haden, Richard M. & Treva Oliver
Hancock, Paul D.
Harrison, Dwight H.
Hartman, E. Frederick, Jr.
Haufler, Walter W.
Heacock, Robert A.
Headley, David C.
Heath, Brad A.
Heinen, Laura L.
Hendricks, Iska
Henrichs, F. Kent
Holder, Robert C.
Holmberg, J.D.
Huff, Dean L.
Igo, Robert M. & Jane
Jain, Mohan L.
Jennings, Tom
Jones, Darryl M.
Karnes, Robert C.
Keck, Joyce M.
Kelley, John T., III
Kendrick, Ronald K.
Kennedy, John Q. & Sally A.
Kipp, Robert A & Deborah Graves
Knapp, Roy M.
Lackner, Michael F.
Lambros, Nancy E.
Laverack, Brian D.
Leupold, Paul W.
Love, Tom J., Jr.
Lucero, Michael L. & Wendi S.
Luhar, Anupum N.
Luhar, Bindu N. & Narendra G.
Lutz, Fred J. & Janice M.
MacCormack, John W.
Maiden, Elmo E.
Manning, Thomas J.
Markman, Richard & Colleen Kennedy
Markman, William E. & Joan Worthington
Marney, Jerry R. & Kathryn D.
Marshall, William N., Jr.
Martin, Richard J.
Mascarello, John A.
McCull, Eugene C., Jr. & Lucinda Campbell
McCune, Gordon A.
McNamara, Bruce J.
McVey, Molly A.
Mercer, Michael P.
Mitchell, Paul H. & Nancy M.
Moats, Byron D. & Nancy Oyler
Morgan, Larry B. & Deborah L.
Nichols, William C.
Noland, Michael C.
Nordquist, Tyler R.
O'Laughlin Stidman, Megan
Oram, James E.
Patel, Mittal K.
Peters, Brian J.
Prohaska, Richard D.
Propheter, Howard L.
Quinn, James E.
Rajewski, Justin D.
Rank, David B. & Louise M.
Rapagnani, N. Laurence
Renyer, Bernard L.
Riley, Gerald W.
Rock, Brian A., PE & Kristie M.
Roof, Anna Lea
Ross, Matthew A.
Rus, Steven E.
Rusco, Larry G. & Karla J.
Ryan, Thomas L. & Mary Helen
Sanders, James C.
Sanford, Hans D.
Schiller, Roger W.
Schloetzer, Jason D.
Schmit, Daniel A.
Schroeder, Chris L.
Schulz, Criss L.
Schwalm, Steven E.
Sells, Frances Hoot
Shaw, David M.
Shroff, Rohinton K.
Skaggs, Gay E.
Skinner, George B.
Smith, Gregory E.
Smith, Douglas B.
Staggs, William A. & Maxine Mitchell
Staley, Paul W.
Stephens, Charles W. & Amy Jannette
Strahm, Mahlon E.
Straight, James W.
Stueckemann, Daniel L. & Cathy S.
Suptic, David M.
Svoboda, Larry J.
Swigart, John E.
Timmerman, Ken
Van Bentheim, Paul J. & Sharon Jensen
Vannorsdel, Irene E.
Vigna, Robert J. & Frances A.
Vyhanek, Joseph J. & Martha Ruhl
Wallen, Jana M.
Wedemeyer, James B.
White, Frank E., Jr. & Linda M.
Wiebe, David J.
Wiley, Donald Edward
Wilkus, Lawrence M.
Winterburg, A. LaVerne
Zerger, Randall S.
Zimmerman, Robert J. & Annette Russell

Corporate Contributors
Biles & Clegg Motorsports
Burns & McDonnell
Concrete Unlimited Construction
ExxonMobil
Honeywell
JFI
Kansas Region SCCA
Procter & Gamble

Matching Gift Organizations
Ashland Foundation, Inc.
American Honda Motor Company, Inc.
Betchel Foundation
Boeing Company
Chevron Phillips Chemical Company LP
Chevron Texaco
DaimlerChrysler
Eaton Charitable Fund
ExxonMobil Foundation
Ford Motor Company Fund
GE Foundation
Harley Davidson Motor Company
Halliburton Foundation, Inc.
Honeywell Foundation
Intel Foundation
International Business Machines
Corporation
Kinder Morgan Foundation
PACCAR Foundation
Proctor & Gamble Fund
Security Benefit Group of Companies
Tellabs, Inc.

Thank You!
From your personal experience, please circle the appropriate response to each statement concerning the Mechanical Engineering Department. Attach any additional comments that you have on a blank sheet of paper. Please return to KU – ME Department, 1530 W. 15th St., 3138 Learned Hall, Lawrence, KS 66045.

Please use the following key to indicate your response:
1-Strongly Agree 2-Agree 3-Neutral 4-Disagree 5-Strongly Disagree 6-No Opinion

1. I feel that the ME Department promotes laboratory development to support the undergraduate program. 1 2 3 4 5 6
2. I feel that the ME Department sufficiently funds laboratory resources, computational facilities, and classroom activities. 1 2 3 4 5 6
3. I feel that the ME Department has a curriculum that meets the current and future needs of industry. 1 2 3 4 5 6
4. I feel that the ME Department is providing advising and enrollment support that meets the students’ needs. 1 2 3 4 5 6
5. I feel that the ME Department responds to alumni and employer suggestions. 1 2 3 4 5 6
6. I am satisfied with the ME Department as a whole. 1 2 3 4 5 6
7. I am satisfied that the curriculum provides graduates with an ability to relate to social/current issues applied to engineering. 1 2 3 4 5 6
8. I am satisfied that the curriculum provides graduates with an ability to relate to ethical issues applied to engineering. 1 2 3 4 5 6
9. I am satisfied that the curriculum provides graduates with an ability to relate to safety issues applied to engineering. 1 2 3 4 5 6
10. I am satisfied that the curriculum provides graduates with an ability to apply knowledge of mathematics and science to engineering problems. 1 2 3 4 5 6
11. I am satisfied that the curriculum provides graduates with the ability to identify, formulate and solve science and engineering problems. 1 2 3 4 5 6
12. I am satisfied that the curriculum provides graduates with the ability to use the techniques, skills and modern engineering tools necessary for engineering practice. 1 2 3 4 5 6
13. I am satisfied that the curriculum provides graduates with the ability to design and conduct experiments, as well as to analyze and interpret data. 1 2 3 4 5 6
14. I am satisfied that the curriculum provides graduates with the ability and skill to function on multidisciplinary teams. 1 2 3 4 5 6
15. I believe that it is important to engage in lifelong learning. 1 2 3 4 5 6
By: Phil Martinez – 2005–2006 President of ASME Student Chapter

KU’s ASME student chapter experienced positive growth for the 2004-2005 academic year. The changes provided ASME with a more organized administrative template ensuring increased progress as well as focus on improving student design capabilities. The past year’s officers were Aaron Weigel - President, Phil Martinez – Vice President, Matthias Van de Liefvoort – Treasurer, and Greg Denton - Secretary.

ASME’s primary goal for the academic year was to increase meeting attendance as well as student participation. To increase awareness, the organization spoke to freshman classes, focused on scheduling events during convenient times, held social events, and displayed more benefits of KU ASME at meetings. These activities created an increase in attendance of at least three-fold over previous years.

We created a dedicated project group, which resulted in an increase in participation by students. The year’s project was a trebuchet. The project group spent countless volunteer hours with design, CAD, machining/fabrication, assembly, testing, and safety. The project was completed in time for the 2005 Spring Engineering Expo. The trebuchet exhibit was highlighted as one of the more popular examples of mechanical engineering for the department. Children and adults alike inquired about the method of building the medieval device as well as how it worked. In the future, KU ASME will strive to provide the ME Department with a new main exhibit for each Engineering Expo.

The 2005-2006 academic year shows even more promise. Ten students currently hold officer positions resulting from the increased member participation. We also plan to increase the number of speakers and tours. For more progress information as well as pictures and videos, visit our new website at www.kuasme.engr.ku.edu.

Current officers are: Phil Martinez – President, Travis Sippel – Vice President, Elizabeth Bond – Secretary, Darren Conrad – Treasurer, Francis Hitschmann – Fundraising Organizer, Leighton LaPierre – Webmaster/Historian, John Randtke – Project Manager, Timo Kip – Assistant Project Manager, Matthias Van de Liefvoort – Social Chair, and Mark Wolfe – Activities Coordinator.
In order for us to know what you are doing and inform others in future newsletters, please drop us a note or fill in this form and return it to: ME Vibrations Newsletter, University of Kansas, Mechanical Engineering Department, 1530 W. 15th St., 3138 Learned Hall, Lawrence, KS 66045. Or, send an email to kume@ku.edu; and visit our website at http://www.engr.ku.edu/me/.

Name __

Class __

Address __

Company ____________________________ Title ________________________

News about yourself, your family, and/or your job: _________________________

University of Kansas
Mechanical Engineering Department
Learned Hall
1530 W. 15th St., Room 3138
Lawrence, KS 66045-7609